时间: 8月13日8点 腾讯会议: 594112238
Abstract: This talk is devoted to studying eigenvalue problem by the weak Galerkin (WG) finite element method with an emphasis on obtaining lower bounds. The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions. As such it is more robust and flexible in solving eigenvalue problems since it finds eigenvalue as a min-max of Rayleigh quotient in a larger finite element space. We demonstrate that the WG methods can achieve arbitrary high order convergence.This is in contrast with classical nonconforming finite element methods which can only provide the lower bound approximation by linear elements with only the second order convergence. Numerical results are presented to demonstrate the efficiency and accuracy of the WG method.
张然,理学博士,教授,博士生导师。国家天元数学东北中心执行副主任,国务院政府特殊津贴获得
者,吉林大学数学学院党委书记,主持国家自然科学基金多项,科研获奖多项。主要从事非标准有限
元方法、随机微分方程数值解、多尺度分析及应用、金融衍生产品的数值计算等课题研究。在包括计
算数学领域的重要期刊《SIAM J Numerical Analysis》、《SIAM J Scientific Computing》、
《Mathematics of Computation》、《IMA J Numerical Analysis》等上发表学术论文50余篇。