向长林个人简介
一、基本信息

|
姓 名 |
向长林 |
最终学历 |
博士 |
职 称 |
副教授 |
职 务 |
无 |
学 位 |
博士 |
电子邮件 |
changlin.xiang@yangtzeu.edu.cn |
通信地址 |
长江大学信息与数学学院,湖北省荆州市南环路1号 |
邮政编码 |
434023 |
研究方向 |
非线性椭圆型偏微分方程,变分法,几何分析 |
社会职务 |
无 |
二、个人简介
1、学习经历
2010.9-2015.9,芬兰于韦斯屈莱大学数学系,基础数学,博士研究生
2007.9-2010.6,华中师范大学数学系,应用数学硕士研究生
2003.9-2007.6,华中师范大学数学系,本科
2、工作经历
2018.9-2019.7,华中师范大学,访问学者
2017.6-2017.7,华中师范大学,访问学者
2017.11-至今, 长江大学数学系,副教授
2016.9-2017.10,长江大学数学系,讲师
2015.10-2016.8,芬兰于韦斯屈莱大学数学系,博士后
三、近五年的教学情况及成果
1、讲授的主要课程
本科生课程:《数学分析》,《数学物理方程》,《泛函分析》
本学院研究生课程:《现代偏微分方程入门》,《泛函分析》
外学院研究生课程:《数学物理方程》
2、承担的实践性教学任务
(1)2017年指导本科生毕业论文, 4人;
(2)2019年指导本科生毕业论文:4人;
(3)2020年指导本科生毕业论文:5人;研究生毕业论文(第二导师):1人
3. 主持及参与的教学研究项目
无
四、近几年的学术研究
1、承担的学术研究课题
(1)Kirchhoff方程奇异摄动问题的研究(11701045),国家自然科学青年基金项目,2018.01
~2020.12,主持人
2、发表的学术论文
(1)Partial regularity of solutions to a linear elliptic system with quadratic Jacobian stru
cture. Applied Mathematics Letters 111 (2021) 1-6. (with Chang-Yu Guo).
(2)Regularity of solutions for a fourth-order elliptic system via conservation law. J. London
Math. Soc. (2) 101 (2020), 907-922. (with Chang-Yu Guo).
(3)Local uniqueness of multi-peak solutions to a class of Kirchhoff equations. Ann. Acad.
Sci. Fenn. Math. 45 (2020), 121-137. (with Gongbao Li, Yahui Niu).
(4)Local uniqueness problem for a nonlinear elliptic equation. Commun. Pure Appl. Anal.
19 (2020), no. 2, 1037-1055. (with Miao Chen, Youyan Wan).
(5)A singularly perturbed Kirchhoff problem revisited. J. Differential Equations 268 (2020),
no. 2, 541–589. (with Gongbao Li, Peng Luo, Shuangjie Peng, Chunhua Wang) .
(6)Multi-peak positive solutions to a class of Kirchhoff equations. Proc. Roy. Soc. Edinbur
gh Sect. A 149 (2019), 1097-1122. (with Peng Luo, Shuangjie Peng, Chunhua Wang).
(7)Some regularity results for p-harmonic mappings between Riemannian manifolds. Non
linear Analysis 188 (2019), 405-424. (With Chang-Yu Guo).
(8)Regularity of quasi-n-harmonic mappings into NPC spaces. Annali di Matematica 198
(2019), 367-380. (With Chang-Yu Guo).
(9)Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev grow
th. Applied Mathematics Letters 86 (2018), 270-275. (With Gongbao Li).
(10)Uniqueness of positive solutions to some nonlinear Neumann problems. J. Math. Anal.
Appl., 455 (2017), 1835-1847. (with Youyan Wan).
(11)Nonlinear Liouville problems in a quarter plane. Int. Math. Res. Not. IMRN 2017, 22
07-2218.
(12)Gradient estimates for solutions to quasilinear elliptic equations with critical Sobolev gr
owth and Hardy potential. Acta Math. Sci. Ser. B Engl. Ed. 37 (2017), 58-68.
(13)Uniqueness and nondegeneracy of ground states for Choquard equations in three dimen
sions. Calc. Val. Partial Differential Equations 55 (2016), 55:134.
(14)Remarks on nondegeneracy of ground states for quasilinear Schrodinger equations. Di
screte Contin. Dyn. Syst. 36 (2016), 5789-5800.
(15)Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic eq
uations. Ann. Acad. Sci. Fenn. Math. 41 (2016), 143-166. (with Cheng-Jun He).
(16)Infinitely many solutions for p-Laplacian equation involving double critical terms and b
oundary geometry. Ann. Acad. Sci. Fenn. Math. 41 (2016), 973-1004. (with Chunhua Wa
ng).
(17)A note on asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy
potential. J. Math. Anal. Appl., 441(1) (2016), 211-234. (with Cheng-Jun He).
(18)L∞-variational problems associated to measurable Finsler structures. Nonlinear Anal.
132 (2016), 126-140. (with Chang-Yu Guo and Dachun Yang).
(19)Quantitative properties on the steady states to a Schrodinger-Poisson-Slater system.
Acta Math. Sin. (Engl. Ser.) 31 (2015), 1845-1856.
(20)Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev
growth and Hardy potential. J. Differential Equations 259 (2015), 3929-3954.