讲座题目:Real-rootedness of independence polynomials
主办单位:数理学院/三峡数学研究中心
报告专家:刘丽
报告时间:2025年10月24日 8:30
报告地点:腾讯会议:539-789-461
报告摘要:Motivated by the conjecture of Alavi, Malde, Schwenk and Erdos,there are families of graphs, whose independence polynomials is unimodal, and furthermore is real-rooted. For example, Chudnovsky and Seymour obtained that the independence polynomial of all claw-free graphs has only real roots. Then it is natural to construct graphs with claw having real-rooted independence polynomials. In this paper,following the idea of Zhu et al., we introduce infinite graphs based on the rooted-product, whose independence polynomials have only real roots. Our results not only make progress on the conjecture of Alavi, Malde, Schwenk and Erdos, but also generalize Zhu et al.'s results.
专家简介:刘丽,教授、博士生导师,霍英东青年教师奖获得者、山东省泰山学者青年专家、山东省组合数学及其应用创新团队负责人。2003年毕业于曲阜师范大学,获数学与应用数学学士;2009年毕业于大连理工大学,获理学博士。主要从事组合数学的研究,在单峰型理论和零点分布性质等方面已完成论文20余篇,发表在AAM,JAC,DM等权威期刊。多项研究成果以定理的形式出现在国外多部专著中,其中包括图灵奖获得者D.E. Knuth(高德纳)的经典著作《The Art of Computer Programming》Vol. 4B。目前主持国家自然科学基金面上项目1项,已主持完成国家自然科学基金3项,省部级基金7项。首位荣获山东省自然科学奖三等奖和山东省高等学校优秀科学技术奖一等奖。