讲座题目:A class of optimal transportation problems on the sphere
主办单位:三峡数学研究中心/理学院
报告专家:李奇睿 研究员 (浙江大学)
报告时间:2024年6月24日(星期一)上午9:00-11:00
报告地点:腾讯会议:360 731 699
报告摘要:In this talk, we discuss a class of optimal transport problems on the sphere, with cost function $c(x,y)=F(d(x,y))$, where d is the spherical distance. We allow that F is a smooth function defined only in a subinterval of $[0,\pi]$, while c takes $-\infty$ at where F is not defined. Under suitable conditions, we show there is an optimal map solving the problem. In particular, if $F(d)=\log (\kappa \cos d -1)$ with $\kappa>1$, or $F(d)=\log\cos d$, then the associated optimal transport problem is respectively equivalent to the refractor problem in reshaping light beams, or the Aleksandrov problem for hypersurfaces with prescribed curvature.
报告人简介:李奇睿,浙江大学数学科学学院研究员,博士生导师。研究方向是几何分析与完全非线性方程。近年来与合作者在Monge最优运输问题,预定曲率问题,几何流等方向取得若干成果,在 J. Eur. Math. Soc., J. Differential Geom.,Adv. Math.,Arch. Rat. Mech. Anal., Trans. Amer. Math. Soc.等著名期刊上发表多篇学术论文。