讲座题目:Uniformization of metric surfaces
主办单位: 三峡数学研究中心/理学院
山东大学数学与交叉科学研究中心
报告专家:Kai Rajala (芬兰于韦斯屈莱大学)
报告时间:2022年12月6日(周二) 上午(09:00—12: 00)
报告地点:Zoom会议(ID: 812-0701-7408,密码:553709)
专家简介: Kai Rajala, 芬兰于韦斯屈莱大学数学与统计学院教授,国际著名数学家。主要研究方向为单复变几何函数论和度量空间上的分析,在拟正则映照理论与度量曲面的几何参数化理论做出了重要贡献。其研究多次获得芬兰科学院基金资助,在Invent. Math., Geom. Funct. Anal., Amer. J. Math., J. Math. Pures Appl., Math. Ann., Arch. Ration. Mech. Anal., J. Funct. Anal., Cal. Var. PDEs, Ann. Inst. H. Poincaré C Anal. Non Linéaire等国际权威高水平期刊发表论文40余篇。
报告摘要: Conformal maps are homeomorphisms which preserve the shapes of infinitesimally small objects. By the classical Uniformization theorem, every smooth surface that admits a homeomorphism onto the standard two-sphere actually admits a conformal homeomorphism onto the standard two-sphere. The Non-smooth uniformization problem asks for strongest possible extensions when smooth surfaces are replaced with metric spaces. We present recent developments on metric surfaces that have finite (Hausdorff) area, and discuss connections to classical problems on conformal maps.