讲座题目:Decay estimates for fourth-order Schrodinger operators in dimension two
主办单位:三峡数学研究中心/理学院
报告专家:李平博士(长江大学)
报告时间:2022年3月25日(周五) 上五(09:00—12: 00)
报告地点:腾讯会议(ID: 695586 606)
专家简介:李平博士目前的研究方向是调和分析领域中的高阶Schrodinger算子的散射估计与非交换调和分析;在J. Evol. Equ.; Communications on Pure and Applied Analysis; J.Math.Anal.Appl等国际期刊上发表多篇论文。
报告摘要:In this talk, we study the decay estimates of the fourth-order Schroginger operator
on
with a bounded decaying potential V(x). We first deduce the asymptotic expansions of resolvent of H near the zero threshold in the presence of resonances or eigenvalue, and then use them to establish the
decay estimates of
generated by fourth-order Schrodinger operator H. Finally, we classify these zero resonance functions as the distributional solutions of
in suitable weighted spaces. Our methods depend on Littlewood-Paley decomposition and oscillatory integral theory. Moreover, due to the degeneracy of
at zero threshold and the lower even dimension (i.e.n=2), we remark that the asymptotic expansions of resolvent
and the classifications of resonances are more involved than Schrodinger operator
in dimension two.