讲座题目:Stability of capillary hypersurfaces and a Robin eigenvalue problem
主办单位:三峡数学研究中心/理学院/湖北省数学与交叉科学创新引智基地
报告专家:夏超博士(厦门大学)
报告时间:2021年11月23日(周二) 上午(14:30—17: 30)
报告地点:腾讯会议(ID: 630 953 458)
专家简介:夏超,厦门大学教授、博士生导师,福建省“闽江学者”特聘教授。曾入选国家高层次青年人才计划,获福建省青年科技奖。主要研究领域是微分几何与几何分析,在超曲面几何中的等周型不等式和相关刚性、几何自由边界问题、预定曲率和曲率流、特征值估计等方面取得了若干研究成果,已在J.Differ.Geom.、Math.Ann.、Adv.Math.、Trans.AMS、IMRN、CVPDE, CAG, JGA等国际高水平数学期刊发表论文30余篇。
报告摘要:In this talk, We will discuss the stability of constant mean curvature (CMC) hypersurfaces. We focus on the capillary hypersurfaces which are CMC ones intersecting with a barrier at constant angles. We prove that a capillary hypersurface in a geodesic ball in any space forms or a horoball in hyperbolic space is stable if and only if it is umbilical. In particular, the relationship between the stability problem and the estimate for a Robin eigenvalue problem of the Jacobi operator will be mentioned. This is based on a joint work with Jinyu Guo and Guofang Wang.