讲座题目: Jacobi stability analysis and the onset of chaos for some chaotic systems
主办单位:三峡数学研究中心
报告专家:魏周超
报告时间: 2022年4月13日(周三)18:30-21:30
报告地点: 腾讯会议(ID: 810-363-546)
专家简介:魏周超, 中国地质大学 (武汉) 教授、博士生导师、副院长。2017年破格晋升教授,2018年入选中国地质大学(武汉)“十大杰出青年”,2021年入选科睿唯安“高被引科学家(Highly Cited Researchers)”和湖北省首批“青年拔尖人才培养计划”。2014年至2017年,在北京工业大学机电学院从事博士后工作。2015年10月至11月, 受波兰科学院Tomasz Kapitaniak院士邀请访问罗兹工业大学。2016年3月至2017年3月,英国University of Oxford数学系访问。目前在Chaos, EPL, Discrete. Cont. Dyn-B, Int. J. Bifurcat. Chaos, Phys. Lett. A, J. Franklin I., Nonlin. Anal. : RWA, Nonlin. Dyn.等国际SCI期刊上第一作者或通讯作者发表论文30多篇。主持国家自然科学基金4项(面上基金2项、青年基金以及数学天元基金各1项),主持中国博士后科学基金第特别资助面上一等项目各 1 项,主持湖北省和浙江省自然科学基金面上项目各 1 项。现为《Mathematical Reviews》、《zbMATH》评论员,中国振动工程学会非线性振动专业委员会委员,湖北省工业与应用数学学会理事,国际SCI刊物《Technical Gazette》编委,主要从事混沌动力学与控制研究。
报告摘要:In a series of papers, Leonov et al. have shown multistability to be related to hidden attractors, whose basins of attraction contain no neighborhoods of any equilibrium. A key matter is how to identify hidden attractors and consider generation mechanisms. Such knowledge, including how to determine the properties of hidden attractors and bifurcation, increase the chances that a given system remains on the most desirable attractor, thereby avoiding the risk of sudden transitions to undesirable dynamics. In fact, we can consider the Jacobi stability (essentially different from Lyapunov linear stability) regions from the view of KCC theory (D.D. Kosambi, E. Cartan, S.S. Chern), which focuses on the differential geometric methods and robustness of the systems by considering the variational equation of the deviation between the whole trajectory and nearby trajectories from the perspective of differential geometry. In addition, the corresponding instability exponent and curvature are applicable for predicting the onset of chaos, which help us to detect hidden chaotic behaviors quantitatively.